Modelling 1 SUMMER TERM 2020

LECTURE 6

Representing Functions

Representing Functions

Recap: Vector Spaces

$$2\mathbf{w} + \mathbf{v} = \begin{pmatrix} 2w_1 + v_1 \\ 2w_2 + v_2 \\ 2w_3 + v_3 \end{pmatrix}$$
 Algebra

Abstract vector spaces

≈ "arrows" in flat space

≈ arrays of numbers

Same principle for set of functions

Representing Functions

Option #1:

Write down algorithm / formula,

e.g.:
$$f(x) := \frac{\sin(x)}{x}$$

Problem: closed form formulation often not known

Representing Functions

Option #2:

- Parametrize function space
 - Then search for the right one
- Two approaches
 - Array of numbers
 - Combination of basis functions

Approximation of Function Spaces

Parametrization #1: Array of Numbers

- Sample function f on discrete grid
- Store sample values
- (Use this as intuition)

Approximation of Function Spaces

Parametrization #2: Linear Ansatz

- Choose basis functions
- Find linear combination
- (More flexible)

Approximation of Function Spaces

Approach #2:

- Choose basis functions b_1 , ..., $b_d \in V$
- Find approximation $\tilde{f} = \sum_{i=1}^{\infty} \lambda_i b_i$
- Coordinates: \tilde{f} is described by $(\lambda_1, ..., \lambda_d)$
- Euclidean geometry

Example Basis Functions

Gaussian basis (B-spline basis) $\{e^{-(x-i)^2}|i=\cdots-2,-1,0,1,2,\dots\}$

Constructing Bases

How to construct a basis?

Important tool

Build a good basis for a problem

Ingredients:

- Basis functions
- Placement in space
- Semantics

Basis Function

Shape of individual functions:

- Smoothness
- Symmetry
- Support

Ensembles of Functions

Basis function sets:

- Stationary
 - Same function repeating? (dilations)
 - Varying shapes

Ensembles of Functions

Monomial basis

Fourier basis (orthogonal)

Basis function sets:

- Orthogonality?
 - Basis functions span independent directions?
 - Advantages: easier, faster, more stable computations
 - Disadvantages: strong constraint on function shape

Example: Radial Basis functions

Radial basis function:

- Pick one template function
- Symmetric around "center" point

Instantiate by placing in domain

2D

Placement

Regular grids

Irregular

Context

- Stationary functions, or very similar shape
- How to instantiate?

Placement

Regular grids

Irregular (w/scaling)

How to shape basis functions?

Back to this problem:

Shape the functions of an ensemble (a whole basis)

Tools:

- Consistency order
- Frequency space analysis

Consistency Order

Consistency order:

- Basis of order k
 ⇔ represents polynomials of (total) degree k exactly
 - Better fit to smooth targets
 - High consistency order: risk of oscillations

Frequency Space Analysis

Which of the following two is better?

Obvious, but why?

- Long story...
 - Sampling theory
 - Fourier transforms involved
- We'll look at this later.

Semantics

Explicit representations

- Height field
- Parametric surface
- Function value corresponds to actual geometry

Implicit representation

- Scalar fields
- Zero crossings correspond to actual geometry

Modeling Zoo

Parametric Models

Point-Based Models