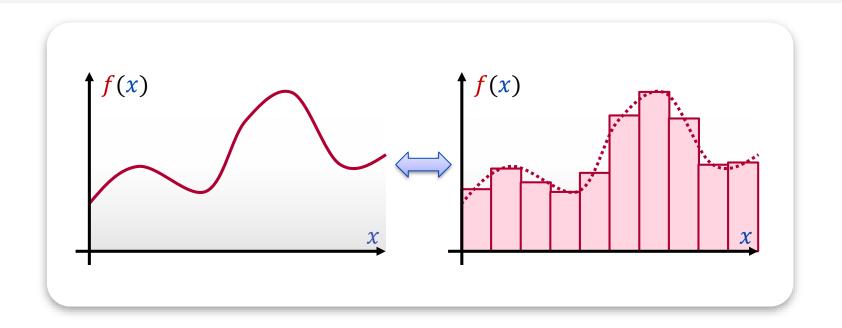
Modelling 1 SUMMER TERM 2020

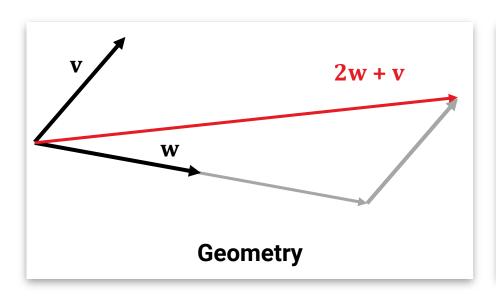


LECTURE 6

Representing Functions

Representing Functions

Recap: Vector Spaces



$$2\mathbf{w} + \mathbf{v} = \begin{pmatrix} 2w_1 + v_1 \\ 2w_2 + v_2 \\ 2w_3 + v_3 \end{pmatrix}$$
 Algebra

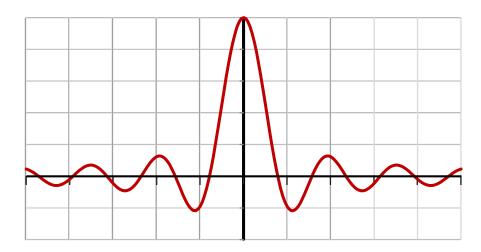
Abstract vector spaces

≈ "arrows" in flat space

≈ arrays of numbers

Same principle for set of functions

Representing Functions



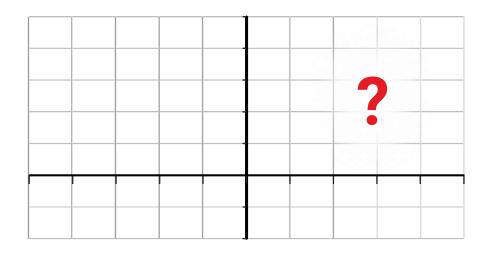
Option #1:

Write down algorithm / formula,

e.g.:
$$f(x) := \frac{\sin(x)}{x}$$

Problem: closed form formulation often not known

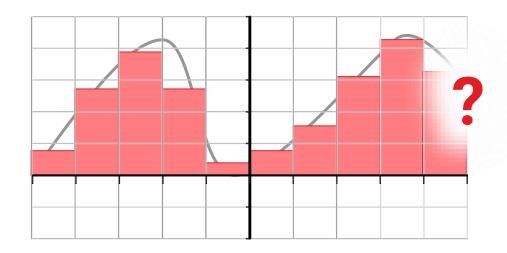
Representing Functions



Option #2:

- Parametrize function space
 - Then search for the right one
- Two approaches
 - Array of numbers
 - Combination of basis functions

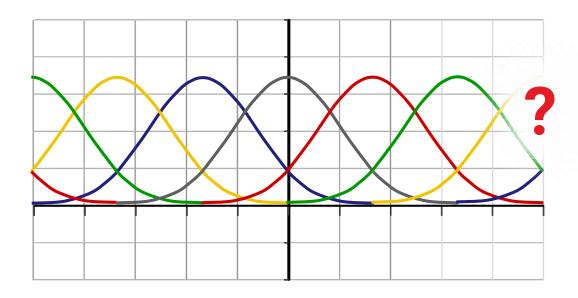
Approximation of Function Spaces



Parametrization #1: Array of Numbers

- Sample function f on discrete grid
- Store sample values
- (Use this as intuition)

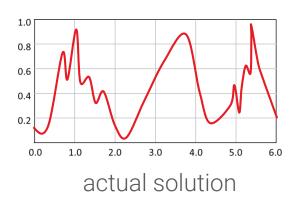
Approximation of Function Spaces

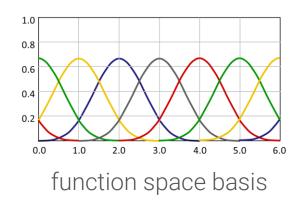


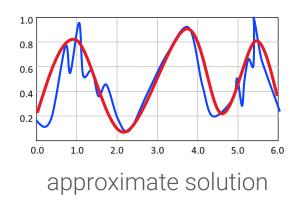
Parametrization #2: Linear Ansatz

- Choose basis functions
- Find linear combination
- (More flexible)

Approximation of Function Spaces



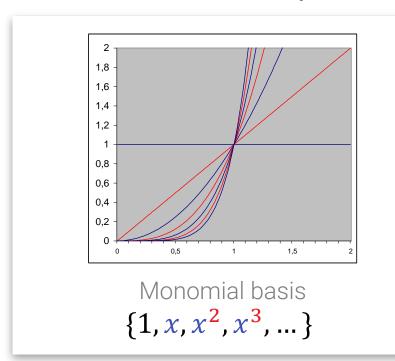


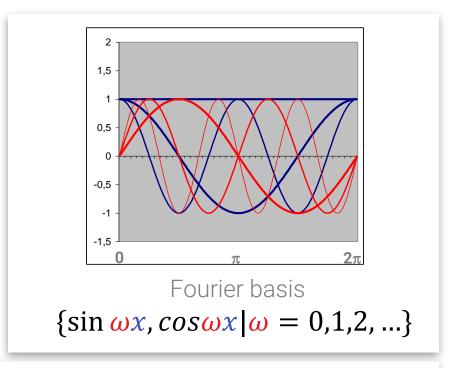


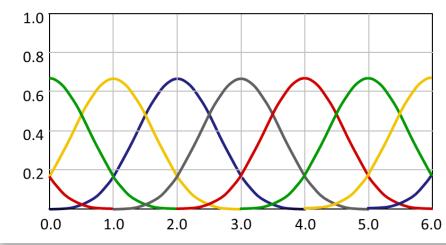
Approach #2:

- Choose basis functions b_1 , ..., $b_d \in V$
- Find approximation $\tilde{f} = \sum_{i=1}^{\infty} \lambda_i b_i$
- Coordinates: \tilde{f} is described by $(\lambda_1, ..., \lambda_d)$
- Euclidean geometry

Example Basis Functions







Gaussian basis (B-spline basis) $\{e^{-(x-i)^2}|i=\cdots-2,-1,0,1,2,\dots\}$

Constructing Bases

How to construct a basis?

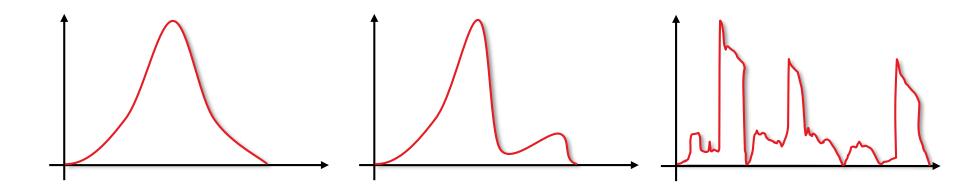
Important tool

Build a good basis for a problem

Ingredients:

- Basis functions
- Placement in space
- Semantics

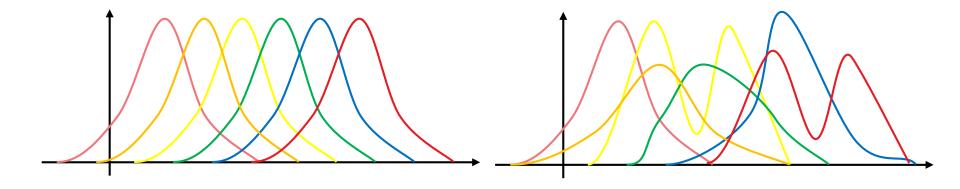
Basis Function



Shape of individual functions:

- Smoothness
- Symmetry
- Support

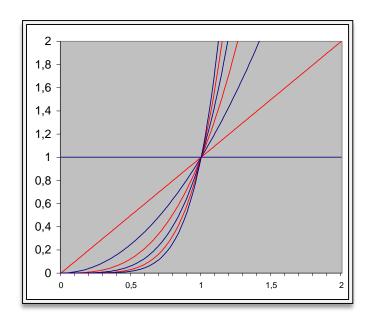
Ensembles of Functions



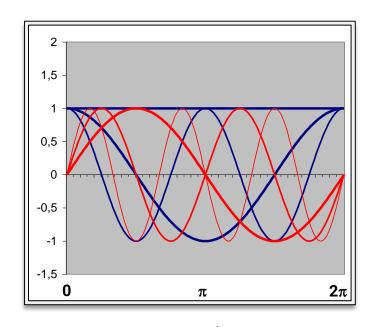
Basis function sets:

- Stationary
 - Same function repeating? (dilations)
 - Varying shapes

Ensembles of Functions



Monomial basis



Fourier basis (orthogonal)

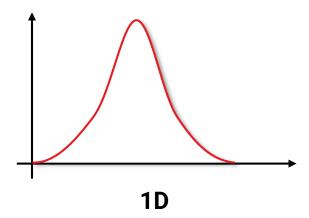
Basis function sets:

- Orthogonality?
 - Basis functions span independent directions?
 - Advantages: easier, faster, more stable computations
 - Disadvantages: strong constraint on function shape

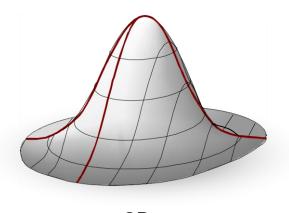
Example: Radial Basis functions

Radial basis function:

- Pick one template function
- Symmetric around "center" point

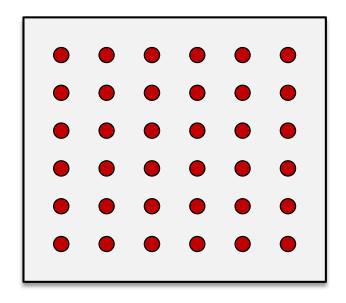


Instantiate by placing in domain

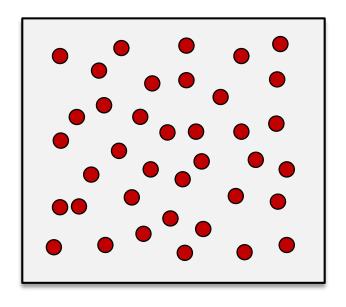


2D

Placement



Regular grids

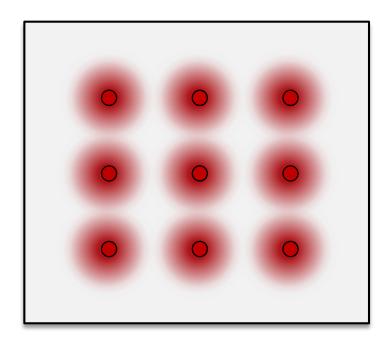


Irregular

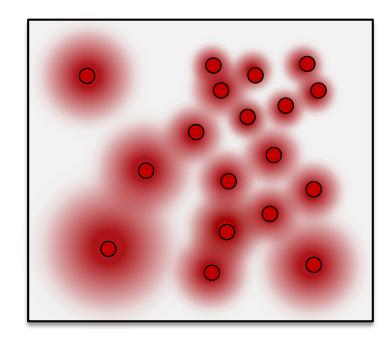
Context

- Stationary functions, or very similar shape
- How to instantiate?

Placement



Regular grids



Irregular (w/scaling)

How to shape basis functions?

Back to this problem:

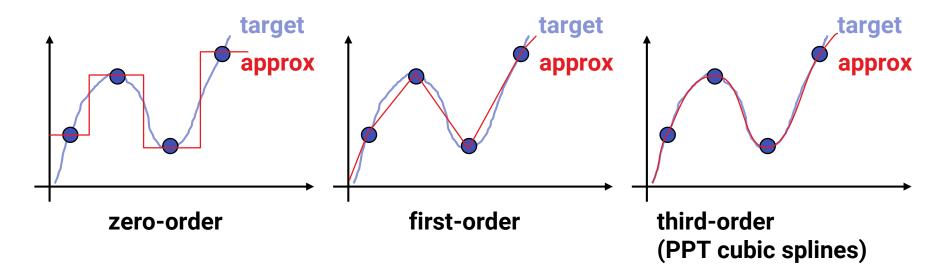


Shape the functions of an ensemble (a whole basis)

Tools:

- Consistency order
- Frequency space analysis

Consistency Order

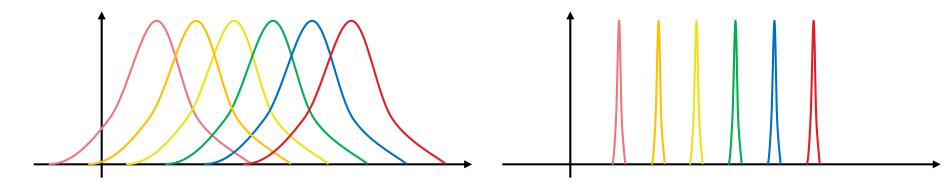


Consistency order:

- Basis of order k
 ⇔ represents polynomials of (total) degree k exactly
 - Better fit to smooth targets
 - High consistency order: risk of oscillations

Frequency Space Analysis

Which of the following two is better?



Obvious, but why?

- Long story...
 - Sampling theory
 - Fourier transforms involved
- We'll look at this later.

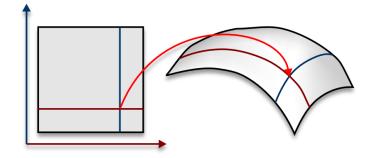
Semantics

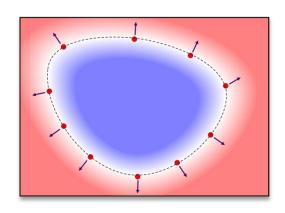
Explicit representations

- Height field
- Parametric surface
- Function value corresponds to actual geometry

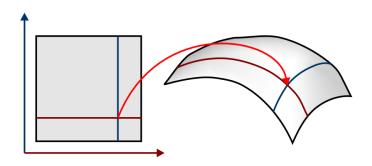
Implicit representation

- Scalar fields
- Zero crossings correspond to actual geometry

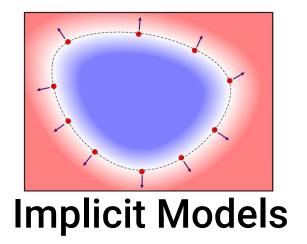




Modeling Zoo



Parametric Models



Point-Based Models